A Contribution to the Deadline Monotonic Scheduling Theory™

Sibelius Lellis Vieira
Instituto de Informatica
Universidade Federal de Goias
Goiania. GO. Brasil 74001-970

e-mail:sibelius Ginf.ufg.br

Mauricio Ferreira Magalhaes
Dept. de Engenharia de Computacao e Automagao Industrial
Universidade Estadual de Campinas
(‘ampinas. SP. Brasil 13081-970

Abstract
In this paper a new schedulability test is proposed for a periodic task set when task deadlines are
arbitrary. provided they are not larger than their respective periods. This task set model can model
a svstem of jitter constrained process found in multimedia svstems. The test is based on a number of
evaluation tests using the periodic task set utilization factor. It is shown that when the task deadline is
not much smaller than its period. the results provided can give the best results among the ones found in
the literature. regarding efficiency and computational costs.

keyword list: Operating Systems. Optimization. Engineering Computation.

1 Introduction

Today's Hard Real-Time Systems(HRTS) must be designed with the goals of flexibility and adaptiveness
required in a dynamic environment. while keeping a deterministic behaviour[l]. By a dynamic environment
we mean a environment composed of dyvnamic tasks. that can arrive and disappear constantly. Flexibility and
Predictability (deterministic behaviour) can be achieved through a caretully scheduling policy. Concerning
the scheduling problem such HRTS must assure that the schedulability tests are fast. so that they may be
appliec on-line. These schedulability tests can only be applied if they are (1) predictably tast (2) provide a
convenlent utilization factor[2].

According to the Deadline Monotonic Theory Scheduling[3. the optimal priority association is known
as the Deadline Monotonic priority association. provided that tasks are svnchronous and deaclines have
arbitrary values. The Deadline Monotonic Scheduling Theory has greatly evolved during the past years. due
to its considerable amount of applicability and the benefits it 1s providing to the field of Hard Real-Tune
Svstems(4]. This scheduling policy asserts higher priorities to tasks with smallers deadlines. We want to
provide a utilization factor bound that allows us to assure that the periodic task set is schedulable[5]. A lot
of schedulatility tests have been proposed in these vears. among them we cite the simulation of arbitrary
deadlines as blocking[6]. the uniform deadline variation[7] and the interference analysis[8]. We propose a
test named arbitrary deadline variation approach(ADVA). which can lead to a suitable tradeoff between
perforimance and computational costs.

In short. we address the issue of real-time CPU scheduling in hard real-time operating systems. The
approach we propose is to design a new admission test for periodic tasks which guarantee that a run time

*This work has been partially funded by FUNAPE/UFG
189

scheduler. based on the Deadline Montonic priority, will be able to honour all the specified deadlines. where
the deadlines may be earlier than the end of the current period. These tasks are sometimes refered as Jitter
constrained tasks. as they show up less jitter than conventional periodic tasks[9]. This set model is very
suitable for multimedia applications where jitter issues are a major concern[10].

In section 2. the related work is reviewed. In section 3. we illustrate our schedulability test. using a
two-task system. In section 4 we present the results for a n-task system. We present comparisons among the
methodologies in section 5 and final remarks in section 6.

2 Related Work

We present a review with the main results concerning the schedulability of a periodic task set when arbitrary
deadlines are present. provided they are smaller than the correspondent periods[11]. The conditions evaluated
to guarantee that a task set is schedulable are based on sufficient or exact tests. A sufficient test assures that
a set 1s schedulable if some condition is true. However, if the condition is false the set might or might not
be schedulable. Generally, the advantage of the sufficient condition is that it may be evaluated in polynomial
time[3]. On the other hand. it may also give poor results compared with the exact condition. In HRTS speech
fast and predictable responses are a valuable feature. We show in this section some approaches which lead
to sufficient tests. They differ mainly in their scheduling efficiency. defined as the CPU relative utilization
of schedulable tasks. Let us explain some terminology first: we refer to one periodic task as 7; = (¢;. d;. pi).
where ¢; is the execution time. d; is the deadline and p; its period. All tasks are synchronous. implying they
are activated at the same time. When d; = p;. it is proven that if U < (247 — 1) the task set T'= {7}, ... T,,}
is schedulable[5]. and U7 is known as the utilization factor of the set, I/ = oy (ei/pi).

2.1 Simulation Arbitrary Deadline as Blocking

Given a task set 7' = {T1.... T}, where T} = (c;. dj.pj). it is assumed that if for task 7; we have d; < pj.
then it has an associated blocking. named B;[6]. Take k; = p;/d;. The task set is schedulable if:

Soi(ei/pi) + max(B;i/pi) < n(2Y/7 —1)

where B; = p; — d;. Then. we get that if U < n(2V/" — 1) — maxz(l — 1/k;) the set is schedulable.

This result applies to the set T in its entirety. Eventually. this sort of results can be improved by noticing
that 7' is schedulable if all its subsets also are. However, we might have subsets of T schedulable. even if T is
not schedulable. Let [< n. and if the condition above is valid so is Zﬁzl(ci/pi) + max(B;/p;) <1(2Y' —1).

2.2 Uniform Deadline Variation Approach

The uniform deadline variation approach(UDVA) constraints the arbitrary deadline values to be uniformly
smaller than the respective periods. in other words, p;/d; = pj/d; whatever i and j. Being k = p;/d;. the
sufficient condition for successfully scheduling the set is [7.12]:

o If A <2and I” < n((2/k)}/" —1)+ (1 - 1/k)
o Ifk>2and IV <k

Again. the sufficient condition might be applied to a subset of 7', let us say with [tasks, leading to the
condition 320 (¢i/pi) < U(2/k)ME = 1) + (1 — 1/k).

190

2.3 Interference Analysis

In this approach. it is possible to apply several sufficient conditions. differing among themselves in the way
they evaluate the interference factor[8]. This method is based on that higher priority tasks will interfere with
the execution of lower priority ones. The evaluated amount of this interference is variable. ranging from a
very simple activation counting of one high priority task in the deadline of a low priority task. until more
sofisticated evalutions of interference. Let I; be the interference of tasks with higher priority than Tj. the
schedulability of T} 1s guaranteed if: !

¢+ 1< d;

We shall proceed with the evaluation of the tests for all tasks. The computatlonal cost depends of how
I; is evaluated. For instance. if J; = T» 1[di/pjlc;. the complexity is O(n?). As the approach we propose
13 O(n). since is it based only at the utlhzatlon factor. we are not considering this approach for comparixon.

3 TFeasible Schedule for a Two-task System using the Arbitrary
Deadline Variation Approach

We now begin our investigation of finding a feasible schedule for a two-task system. using an approach
we name arbitrary deadline variation approach(ADVA). Given a two-task system 7 = {T1.T>}. such that
Ti = (ci.d;. pi). where ¢; < d; < p;. being ¢; the execution time. d; the relative deadline and p; the period of
task T;. we want to know if the task set is schedulable through a fixed priority association. We refer to this
problem as the schedulability question. It is known that when the deadline of each task is not greater than
its period. the deadline monotonic is the optimal priority association[3].

To find out a solution for the schedulabilily question that can be stated as a sufficient test. we need to
provide an evaluation of the minimum utilization factor(l7,;,). Its definition is such that if the task set
utilization factor is not greater than (7,;, then the set is schedulable. Let us assume dy < d» and d; = p;.
for both tasks. We know that the utilization factor({") is given by:

U=ci/pr+cafps

The 0.833 limit is known as the mininum utilization factor that guarantees T schedulability. applving the
rate monotonic priority association[3]. This means that any two-task set T with Uz < 0.83 is schedulable
through the rate monotonic scheduling. It is possible to show that there is a system 7. with [/7 = 0.84. which
1s not schedulable. For the 0.83 limit. the task parameters are:

pe = 1.414p, = 1.414d,
‘1:1':—]'1e¢°—liljt1 i
T=202MF) = (2P 4 (212 1)

We notice that the minimum utilization factor occurs when we uniformly distribute the CPU time among the
competing tasks. such that each task has the same amount of utilization.

We show in Figure 1 the CPU utilization for 7 given by 77 = (414.1000) and 7% = (586.1414). The
schedulability is guaranteed once we have I/ = 0.828. When we increase the execution time of 7> in one
unity. say In = (587, 1414). the system is no longer schedulable. This missing deadline is shown in Figure 2.

For the general case we name k; = p;/d; the squeeze factor of task 7;. The greater the squeeze factor the
harder will be to meet the task timing requirements. The minimum squeeze factor is 1. indicating that the
task must finish at any time within its period. For the general case &; > 1. Our initial goal is to analyze how
the squeeze factor will affect the schedulability of the two-task system. We regard some specific cases:

..11':>1€:I\7'_7_:].
- 191

Tl cl cl

T2
c2
0 p2
Figure 1: 17, 75. valid schedule
Tl ol cl
0 pl
T | — © &
0 p2

Figure 2: T» missing deadline

e ky=leka>1

o ki >1

3.1 Specific scenarios

As our first specific scenario. let us analyze the behaviour ot the tasks in T° when k» = 1 e kq is arbitrary. As
ds = ps. task T» would not miss its deadline if U < 0.828. so its schedulability i1s not affected. Regarding 7. it
is possible to miss a deadline if d; < 0.828p; and ¢; = 0.828p;. So we have a new schedulability condition that
relates to ky. However if d; > 0.828p; the previous condition is kept. Thus T} is schedulable if U7y < Upyin(1).
where U7; = ¢;/p; and Unin (1) = 1/k1. On the other hand 7% will be schedulable if U7} + U < 0.828. and T
is schedulable if 77 and 75 also are. So we regard Unin(2) = 0.828 = 2(21/2 - 1).

At the second scenario. 7} has higher priority and makes its deadline. Let T} = (414, 1000.1000) and
Ty = (co.da. 1414). We see that if ¢o = 586 and dy = 1414 the schedulability of T"is guaranteed. Suppose that
d+ changes to d2» = 1400. We notice that we cannot execute the first instance of 75 after 1400 for example.
Suppose that 7> misses its deadline after 1400, finishing at 1401. This is possible if ¢; = 400 and ¢2 = 601.
Thus. d2 = 1400 enables the existence of the utilization factor U = 0.825 that, although smaller than the
minimum, does not guarantee the schedulability. In Figure 3 we see the 77 and 7> scheduling as above.

192

Tl

d2

T2

c2

0 p2

Figure 3: Missing an arbitrary deadline

Indeed. as seen in Figure 3, decreasing d» makes the utilization factor of I} decrease more than the increase
of T» utilization. while fully using the CPU. This decreases the minimum utilization factor that enables the
sufficient condition[3].

When T; and 7> have arbitraries deadlines we have to take into account d;. that may affect T} schedulab-
ility. as well as d» responsible for decreasing the minimum utilization factor.

3.2 Evaluation of the Minimum Utilization Factor

The minimum value for the utilization factor must be obtained according the approaches developed elsewhere.
based on the minimum of utilization factor that fully utilizes the CPU[3]. In this sense. let us consider the
svstem T as before. with d; = py and ds = Ip1 + ¢. where [is a non-negative integer and ¢ < p;. We can
show that. given such system. we can get 7~ such that its utilization factor is smaller while keeping the CPU
fully utilized.

Theorem 1 Let T = {11.T>} be a system where T; = (¢;.d;. p:) with da = Ilp1 +q. If the system T~ given
as T = {T7.T3}. where Ty =Ty and T5 = (c3.p1 + ¢.p3). is schedulable T' is also schedulable.

Proof. In fact. we want to show that. if for a system with d» < 2p; the system is schedulable, then if
d» = Ipy + ¢ the new system will also be schedulable. Assume that ds = p; +¢. where ¢ < p;. and {77.7T»} are
schedulable. we mean {7+ < Upivn. Now. change T such that d= = Ipy +¢ and pa = kads. If we keep the fully
utilization up to the deadline. co = ¢35+ (I—1)(p1—c1). So T utilization will not change and 7% utilization will
depend on the new value of ¢o. Originally either ¢o = p1 —c1 or ¢z = da — 2¢3. If ¢co = p; — ¢y then ¢» = lc3.
and as p = Ip3 — (I —1)koq. the minimum utilization factor that fully utilizes the CPU occurs when ds < 2p;.
On the other hand. if ¢» = ds — 2¢1 again we have a mininum utilization factor when d» < 2p;. We may also
substitute Ty for T = (c;.{d;.lp1). meaning that the new period(and deadline) of 77" is! times greater. Thus
c5 = ea+(l—1)cy in order to fully utilize the CPU. So. U7+ = 5 /lpr+cy/pa.or Upe = cf /lpi+(ca+({—1)c1/p=.
Then [z = ¢y /lp1 + (= 1)e1/pa+ca/ps < e flpr+ (1= 1)er/lpr +ca/pa = e1/pr+ca/p2 = Ur. Concluding.
the smaller value for the fully utilization occurs when d» < 2p;.

Any further analysis will use this result. Let us relax the above conditions. observing that. indeed. we may
have a schedulable set even if di < p1. Let Upin(2) be the minimum U7 value that guarantees the two-task
set schedulability.

Theorem 2 Let T be as above. such that do < 2p1. and Upmin(2) the minimum value of U to guarantee T-
schedulability. The set T is schedulable if di > Upin (2)p1-

193

Proof. As Tb is schedulable anyway, only 77 could miss its deadline and it would happen only if ¢; > d;.
implying a value of U such that U > Upi, (2). Thus, the set is schedulable if [/ < Unmin(2).

Let us now start the evaluation of the utilization factor minimum value. Initially we make an analysis
based on three possibilities:

o p1 < da.

e dy <p1 < pa.

° p2 < p1.

3.3 Common Scenarios

Let us evaluate the minimum utilization factor when p; < ds. We set the following parameters:
1 = mldl
P11 = A dl = d1
d» = Kd,. provided that d» < 2p; as stated in theorem 3.3.1. Yet. p2 = kads = Nkaod,
We have three possibilities for ¢;:

o ¢ <dy—p
e ¢y >dy—py
e ¢y =d»—py
Let us analyze each possibility in turn:

e ¢y <dy—py
The value of ¢ must be d» — 2¢;. Then we have:
cp =midy e co = (K —2my)d;
Thus, U = my/ki + (K — 2m1)/Kks, and rearranging:
U =1/ka+my(Kko — 2k1)/Kkiks

We realize that the U value increases with ¢y (my) if Nko — 2k; is positive.

o ¢ >dr—p
We have co = p; — c1. Then ¢; = mydy e co = (ky —my)d;. generating:
U=my/ki+ (k1 —my)Kko
U= N/ky+ (2k1/k2)(1/K) — (ko + 1) /k>

As Nka — k1 > 0 this choice makes U increase with ¢;. So we have to decrease ¢1. Then the optimal
value of ¢; is given by ¢; = ds — p;. In this case ¢o = (2k; — K)d;.

U=my/k1+ (2k1 — K)/Rk»

U = K/ky + (21 [ha) (1K) = (ks + 1)/ ks

The following observations are valid when p; < p» < 2p;. Our hypothesis is that p2 < 2py. Further. we
analyze what happens if ps > 2p;.

The minimum value of I depends on K. given k; and ko. As we assume k; = 1. A defines the optimal
value for the ratio do/p; when there is a squeeze factor for 7b. The minimum value of U7 can be given deriving
{7 with respect to I:

dU/JdRK = 1/ky — 2(k1/k2)(1/K)? =0

We get the optimal value of K = k;(2/k2)'/?. For k; = 1, we have K = (2/ka)1/?. The value for U, is:

[mzn — l/lv) (2]\')1/0 lv"‘{']-))

194

We observe that if ko = 1. we have Uy, = 2(21/7 — 1)

We now turn back to the case where Kko — 2k; > 0. with ps > 2p;. The minimum value is still valid
provided ko < 2. So. we are assuming that ko < 2. Elsewhere we analyze the results for any k-.

Let us take the case where k; is general. The change that must be made is related to what utilization
factor we have to deal with. A very high &y value may minimize the utilization factor. given as 1/k;. As we
are assuming that ¢; < d;. this will pose no problem which is not true in the general case. For this case.
given kq e ko. we try to guarantee that dy > Up,;,(1)p1. Regarding 5. it 1s also needed to guarantee that
da > Upin(2)p2. This is necessary to accept Uy, (1) as the minimum utilization factor that guarantees tasks
whose utilizatlon factor are smaller.

We conclude our evaluation for the scenarios analized with the following observations:

e 77 is schedulable if {7} < Ui (1) = 1/k;. as given before for {pyip.
o T> is schedulable if] + Uy < Upnin(2).

e The above conditions are suitable if k9 < 2. Otherwise [yin(2) = 1/ks.

3.4 Uncommon Scenarios

Let us consider two uncomion scenarios:
o dy < p1 < po
e pa < pi

In the former case we point out the meaning of the preemptive algorithms. where higher priority tasks
preempts lower ones. As p; > d» and T3 has higher priority no preemption occurs. Thus. up to d» we execute
only one instance of each task. Thus ¢1 + ¢a < do. or equivalently. ¢s = do —c¢1. So U = ¢1/p1 + (ds — c1)/p-.
or 7> c1/p1 + (da — c1)/pa2. since p1 < pa. Then U > ¢1/p1 — ¢1/pa+ 1/k2. In this way. the minimum
utilization factor occur\ when ¢; = 0, or I” = 1/ks. So. we can understand the minimum utilization as being

[in(1.2) = 1((2/k2) 1)+ l-1/A). or Upin (1,2) = 1/ka.
In the latter ¢ = dq—cl leading to U = ¢1/p1+(do—cl)/poand {7 < c1/p1+(do-—cl)pl and then ¢y, \hould
be a maximum in order that I” be a minumum. This happens when ¢; = d; of Upnin(2) = 1/ ki + (N — 1)k I\

4 Schedulability Conditions for a n-task system

In the general case, we have an arbitrary periodic task system. each task with an arbitrary deadline. provided
that if and only if d; < d; then p; < p;. Let the n-task set be T = {7T7..... Ty} such that d; < d» < d3 <

< dy e p; =kid; for all i = 1...n. Also. as cited above. p; < ps < ...,pn. As the Deadline Monotonic
Algorithm is optimal. let us use it in our evaluations. Two cases must be observed:

-di <pi<diygifori=1...n—1and d, < p,.
- pi <pjfori<y.

Both cases are very representative of applications and will be analyzed.

4.1 Period between adjacent deadlines

First, we consider d; < p; < d;+1. provided d,, < 2p;. This last equation will give us the best relation for the
Utilization Factor.

[' = Z?:]_ Ci/l)i
195

In order to get the minimum from U fully using the CPU, we have to choose the execution times such
that a small change in these values will not decrease U/ while fully using the CPU. Such values are:

i =pix1—pifori=1...n—2

Ch-1 =dy — Pn-1

en=dyn —2(cr+ ... FCn1)

Thus. we get [V given as:

U= Z?:—f(pi+l - pi)/kidi + (dn - pn——l)/kn—ldn—l + (dn - 2(Cl + ...+ Cn-l))/l‘)ﬂd”

Naming k; j = d;/d;. we have:

U = koko/ky + ksksa/kakony + .+ kp1/knoikn_11+ (1 —n) 4+ (2k1 — kn1)/knkn

As OU/0ki 1 = 0. we have:

U = n((2/ka) 7 = ((n = Dk +1)/nky)

4.2 Ordered Periods

Let us consider a system in which the period task order is equivalent to the deadline task order, such that if
d; < dj. then p; < p;. Let IU be the first index such that p, > d,,. We will see that any execution that come
from the tasks 7}, to T,,—1 will increase the utilization factor.

Theorem 3 Let T be given as above. If Uy is given through T such that ¢;, > 0. for pi > dy. then for Us
given by ¢ = 0 and ¢, = ¢ + ¢, we have Us < Uj.

Proof. As pi > d,. we have only one execution of T in d,. As p, > pi by hypothesis. the utilization
factor contribution from 7} outperforms the one from T, if the execution time of T can be changed to
the one from T,, and vice-versa. Thus. every computation from T, must be null. in order to minimize the
utilization factor. As it holds for every A, all the tasks with p; > d,, do not participate on the evaluation of
the minimum utilization factor.

Regarding the system T as above the minimum utilization factor should take into account only tasks whose
periods are smaller than the maximum deadline(d,). For these tasks the condition behaviour will remain as it
was in the last section. The minimum factor will be availableif ¢; = p;41 —p;. for i < kand ¢j_1 = dyy —pr—1.
The ¢, value is as before. The system behaviour is much like the same, excluding the n — &k + 1 tasks. So the
minimum factor will be

U = 1((2/kn) " = (1= Dk + 1)/1k)

The schedulability analysis will apply whenever the order remains, for instance. if d; < d; then p; < pj;.
Let it be a task set T" of n tasks that satisfies this requisite. The question is to fullfill the schedulablht\ for
this task set, given Uy, values. We define Uppip (a.b) = a((2/ks) Y — ((a— 1)ky + 1))/aky). We analyze the
schedulability of each task separately:

e Tj is schedulable if [7(1) < Uppin(1.1)

e T4 is schedulable if U(2) < Upyin(2.2) for the case where do < p; and U(2) < Upin(1.2) for the case
where d» > p; ,

o T is schedulable if U(j) < T

Tmin (i + 1. 7). where # is the index such that p; <d; < piy1.

This procedure covers all the possible cases and it has polynomial time complexity, as it uses a sort and
search for each task.

196

5 Comparison among the Methodologies

Here we compare the methodologies proposed with the related work, mainly concerning computational cost
and performance values. taken as a measure of the CPU utilization that can be achieved. We present a
separate analysis for each one of the related methodologies comparing them with our proposal. We would
like to emphasize that HRTS requires that the computational cost be predictably minimum in order to be
applied at execution time.

5.1 Blocking Methodology

The blocking approach assumes that the task deadline may be smaller than the task period through the
blocking factor. regarded as the time interval within the task period that the task will have to be blocked.
This test imposes a polynomial computational cost. but its performance is poor. when compared with the
Arbitrary Deadline Variation Approach. We show below that ADVA has. in the general case. a better
efficiency. once any task set schedulable using the blocking is proved to be schedulable using ADVA.

Theorem 4 If a set 7 is schedulable using the blocking approach. then it is also schedulable using ADVA.

Proof. Consider 7 a periodic task set with k; = p;/d;. Let A = maz(k;). Thus maxz(1—-1/k;) = 1-1/L.
As B;/pi = 1—1/k;. and assuming 7 is schedulable using the blocking approach. we ha\ e U7 < n(Zl/” 1)—(1—
1/RK)[12]. Itis l\no“n that 1/k, > 1/K.implying n((2/k,) 1/"—1)—1— 1=1/ky) > n(2/[\ 1/” +(1-1/L).
On the other hand n 2/]\ Y1)+ (1-1/K) > n(2Y"=1)—(1-1/K). Thus U7 < n((2/ky) YR 1) (1=1/ky)
which implies that 7 is \(‘hedulable using ADVA

To see that ADVA is more general let 7 be {T1 To}. where T; = (¢;.d;.pi). If 1/ky = 0.8 and 1/k» = 0.7.
Then 7 is schedulable using ADVA if " < 0.66. Taking 7; = (20.40.50) and 75 = (17.49.70). Thus

[= 0.642. However 7 is not schedulable using the blocking approach.

5.2 Uniform Deadline Variation Approach

Regarding the computational cost. the Uniform Deadline Variation Approach is equivalent to ADVA. Both
base their tests on the CPU utilization factor. The performance of the UDVA algorithm is at best equal to
the one obtained using ADVA. This happens naturally since the ADVA algorithm is a generalization of the

UDVA.
Theorem 5 If a set 7 is schedulable using UDVA then it is also schedulable using ADVA.

Proof. Let T be a periodic task set such that k' = p;/d; for each task in 7. As T is schedulable using
UDVA. we will have I” < n((2/K)Y"=1)+(1=1/K)[9]. Thus. as k, = K. U < n((2/ka)Y/"=1)+(1=1/ky).
Then the schedulability will also be valid using ADVA. Now take k; = p;/d; for each task I;. Let T’
the derived set from T. taking k; = K. where K = max(k;) for all tasks. Thus, the task deadlines of
tasks in 77 are smaller than the ones from 7. Thus. if 77 schedulable. so is 7. As T’ is schedulable if
"< n((2/K)Y" — 1)+ (1 = 1/K). Since k, < K T will be schedulable using ADVA.

We notice that there is a task set schedulable using ADVA. but whose schedulability is not guaranteed
using UDVA. as observed in the example below.

Let a two task set such that p; = kid; and ps = kods. Assume ky = 0.9 and ko = 0.95. So Ay > ko
This set is schedulable using ADVA if U < 0.807. However UDVA is supposed to also build a successfully
schedule if I~ < 0.783. If ¢; = 20, p1 = 50. co = 28 e po = 70, {7 = 0.8. and this set 1s not guaranteed to be
scheduled using UDVA.

197

6 Final Comments

The ADVA is particularly interesting when the environment is complex and highly dynamic. and requires
a very supportive scheduling algorithm. If changing the task set is a rule rather than an exception the
interference analysis may no longer be useful, as an on-line approach.

Our ADVA methodology is very general, being restrictive only at rare situations. In any case, we observe
that when the deadlines are arbitraly small. neither sufficient nor exact tests may give good performance
results. In this case, variable priority association should outperform any fixed priority association.

As an avenue to pursue we are considering the inclusion of a ready time for each task. defined as the time
instant the task may begin execution. This model may fit the inclusion of E/S in the processing models of
HRTS.

References

[1] Vieira,S.L. and Magalhaes,M.F.: ‘On-line Sporadic Task Scheduling in Hard Real-Time Systems’. To be
published in International Journal of Computer Systems and Engineering. 1997.

[2] Vieira.S.L.: ‘Escalonamento Dinamico de Tarefas Periédicas e Esporddicas’. Ph.D. Thesis. 1994.
Unicamp. Brasil.

[3] Leung.J. and Whitehead.J.: *‘On the Complexity of Fixed-priority Scheduling of Periodic, Real-Time
Tasks’, Performance Evaluation, 1992, (2}, pp. 237-250.

[4] Audsley.N.C., Burns,A.. Richardson,M.F. and Wellings.A.J.: ‘Deadline Monotonic Scheduling Theory ",
Proc. of the IFAC' Workshop on Real-Time Programming. 1992. pp. 55-60.

(5] Liu.C.L. and Layland.J.: ‘Scheduling Algorithms for Multiprogramming in a Hard Real-Time Envir-
onment’. Journal of the ACM, January 1973 20(1)pp. 46-61.

(6] Sha.L. and Goodenough.J.: ‘Real-Time Scheduling Theory and Ada’, Computer. 1990. 23(4)pp. 53-62.

[7] Lehoczky.J. and Sha.L.: ‘Performance of Real-Time Bus Scheduling Algorithms’. ACM Performance
Fvaluation Review, 1986. (14).

(8] Audsley.N.: ‘Deadline Monotonic Scheduling’; Technical Report YCS 146. University of York. 1990.

(9] Barth, I.: ‘Extending the Rate-Monotonic Scheduling Algorithm to Get Shorter Delays’. Proc. of the
5th NOSSDAV, 1994. '

[10] Steinmetz. R.: ‘Multimedia Technoloty’, Springer-Verlag. 1993.

[11] Lehoczky.J.P.: ‘Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines’. Proc.
IEEE 11st Real-Time System Symposium, December 1990, pp. 210-209.

[12] Sha.L. Rajkumar.R. and Lehoczky,J.: ‘Priority Inheritance Protocols: An Approach to Real-Time
Synchronization’. IEEE Trans. on Computer, 1990, 39 pp. 1175-1185.

198

